skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rivera, Michael L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multi-material 3D printing combines the functional properties of different materials (e.g., mechanical, electrical, color) within a single object that is fabricated without manual assembly. However, this presents sustainability challenges as multi-material objects cannot be easily recycled. Because each material has a different processing temperature, considerable effort must be used to separate them for recycling. This paper presents a computational fabrication technique to generate dissolvable interfaces between different materials in a 3D printed object without affecting the object’s intended use. When the interfaces are dissolved, the object is disassembled to enable recycling of the individual materials. We describe the computational design of these interfaces alongside experimental evaluations of their strength and water solubility. Finally, we demonstrate our technique across 9 multi-material 3D printed objects of varying structural and functional complexity. Our technique enables us to recycle 89.97% of the total mass of these objects, promoting greater sustainability in 3D printing. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. The Biofibers Spinning Machine produces bio-based fibers (biofibers) that are dissolvable and biodegradable. These fibers enable recycling of smart textiles by making it easy to separate electronics from textiles. Currently, prototyping with the machine requires the use of low-level commands, i.e. G-code. To enable more people to participate in the sustainable smart textiles design space and develop new biofiber materials, we need to provide accessible tools and workflows. This work explores a software tool that facilitates material exploration with machine parameters. We describe the interface design and demonstrate using the tool to quantify the relationship between machine parameters and spun gelatin biofibers. 
    more » « less
  3. Augmentative and alternative communication (AAC) devices enable speech-based communication, but generating speech is not the only resource needed to have a successful conversation. Being able to signal one wishes to take a turn by raising a hand or providing some other cue is critical in securing a turn to speak. Experienced conversation partners know how to recognize the nonverbal communication an augmented communicator (AC) displays, but these same nonverbal gestures can be hard to interpret by people who meet an AC for the first time. Prior work has identified motion through robots and expressive objects as a modality that can support communication. In this work, we work closely with an AAC user to understand how motion through a physical expressive object can support their communication. We present our process and resulting lessons on the designed object and the co-design process. 
    more » « less
  4. Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption. 
    more » « less
  5. The current work examines interactions that are enabled when depositing a human-safe hydrogel onto textile substrates. These hydrogel-textile composites are water-responsive, supporting reversible actuation. To enable these interactions, we describe a fabrication process using a consumer-grade 3D printer. We show how different combinations of printed hydrogel patterns and textiles create a rich actuator design space. Finally, we show an application of this approach and discuss opportunities for future work. 
    more » « less
  6. Abstract: We present a new type of 3D printer that combines rigid plastic printing with melt electrospinning? a technique that uses electrostatic forces to create thin fibers from a molten polymer. Our printer enables custom-shaped textile sheets (similar in feel to wool felt) to be produced alongside rigid plastic using a single material (i.e., PLA) in a single process. We contribute open-source firmware, hardware specifications, and printing parameters to achieve melt electrospinning. Our approach offers new opportunities for fabricating interactive objects and sensors that blend the flexibility, absorbency and softness of produced electrospun textiles with the structure and rigidity of hard plastic for actuation, sensing, and tactile experiences. 
    more » « less